USN-5299-1: Linux kernel vulnerabilities

Publication date

22 February 2022

Overview

Several security issues were fixed in the Linux kernel.


Packages

  • linux - Linux kernel
  • linux-aws - Linux kernel for Amazon Web Services (AWS) systems
  • linux-kvm - Linux kernel for cloud environments
  • linux-lts-xenial - Linux hardware enablement kernel from Xenial for Trusty

Details

Mathy Vanhoef discovered that the Linux kernel’s WiFi implementation could
reassemble mixed encrypted and plaintext fragments. A physically proximate
attacker could possibly use this issue to inject packets or exfiltrate
selected fragments. (CVE-2020-26147)

It was discovered that the bluetooth subsystem in the Linux kernel did not
properly perform access control. An authenticated attacker could possibly
use this to expose sensitive information. (CVE-2020-26558, CVE-2021-0129)

It was discovered that the RPA PCI Hotplug driver implementation in the
Linux kernel did not properly handle device name writes via sysfs, leading
to a buffer overflow. A privileged attacker could use this to cause a
denial of service (system crash) or possibly execute arbitrary code.
(

Mathy Vanhoef discovered that the Linux kernel’s WiFi implementation could
reassemble mixed encrypted and plaintext fragments. A physically proximate
attacker could possibly use this issue to inject packets or exfiltrate
selected fragments. (CVE-2020-26147)

It was discovered that the bluetooth subsystem in the Linux kernel did not
properly perform access control. An authenticated attacker could possibly
use this to expose sensitive information. (CVE-2020-26558, CVE-2021-0129)

It was discovered that the RPA PCI Hotplug driver implementation in the
Linux kernel did not properly handle device name writes via sysfs, leading
to a buffer overflow. A privileged attacker could use this to cause a
denial of service (system crash) or possibly execute arbitrary code.
(CVE-2021-28972)

It was discovered that a use-after-free existed in the Bluetooth HCI driver
of the Linux kernel. A local attacker could use this to cause a denial of
service (system crash) or possibly execute arbitrary code. (CVE-2021-33034)

Norbert Slusarek discovered that the CAN broadcast manger (bcm) protocol
implementation in the Linux kernel did not properly initialize memory in
some situations. A local attacker could use this to expose sensitive
information (kernel memory). (CVE-2021-34693)

马哲宇 discovered that the IEEE 1394 (Firewire) nosy packet sniffer driver in
the Linux kernel did not properly perform reference counting in some
situations, leading to a use-after-free vulnerability. A local attacker
could use this to cause a denial of service (system crash) or possibly
execute arbitrary code. (CVE-2021-3483)

It was discovered that the bluetooth subsystem in the Linux kernel did not
properly handle HCI device initialization failure, leading to a double-free
vulnerability. An attacker could use this to cause a denial of service or
possibly execute arbitrary code. (CVE-2021-3564)

Murray McAllister discovered that the joystick device interface in the
Linux kernel did not properly validate data passed via an ioctl(). A local
attacker could use this to cause a denial of service (system crash) or
possibly execute arbitrary code on systems with a joystick device
registered. (CVE-2021-3612)

It was discovered that the tracing subsystem in the Linux kernel did not
properly keep track of per-cpu ring buffer state. A privileged attacker
could use this to cause a denial of service. (CVE-2021-3679)

It was discovered that the MAX-3421 host USB device driver in the Linux
kernel did not properly handle device removal events. A physically
proximate attacker could use this to cause a denial of service (system
crash). (CVE-2021-38204)

It was discovered that the 6pack network protocol driver in the Linux
kernel did not properly perform validation checks. A privileged attacker
could use this to cause a denial of service (system crash) or execute
arbitrary code. (CVE-2021-42008)

Amit Klein discovered that the IPv6 implementation in the Linux kernel
could disclose internal state in some situations. An attacker could
possibly use this to expose sensitive information. (CVE-2021-45485)


Update instructions

After a standard system update you need to reboot your computer to make all the necessary changes.

Learn more about how to get the fixes.

ATTENTION: Due to an unavoidable ABI change the kernel updates have been given a new version number, which requires you to recompile and reinstall all third party kernel modules you might have installed. Unless you manually uninstalled the standard kernel metapackages (e.g. linux-generic, linux-generic-lts-RELEASE, linux-virtual, linux-powerpc), a standard system upgrade will automatically perform this as well.

The problem can be corrected by updating your system to the following package versions:

Ubuntu Release Package Version
16.04 xenial linux-image-virtual –  4.4.0.219.226  
linux-image-generic –  4.4.0.219.226  
linux-image-aws –  4.4.0.1135.140  
linux-image-4.4.0-219-lowlatency –  4.4.0-219.252  
linux-image-4.4.0-1100-kvm –  4.4.0-1100.109  
linux-image-4.4.0-1135-aws –  4.4.0-1135.149  
linux-image-4.4.0-219-generic –  4.4.0-219.252  
linux-image-kvm –  4.4.0.1100.98  
linux-image-lowlatency –  4.4.0.219.226  
14.04 trusty linux-image-generic-lts-xenial –  4.4.0.219.190  
linux-image-4.4.0-1099-aws –  4.4.0-1099.104  
linux-image-4.4.0-219-lowlatency –  4.4.0-219.252~14.04.1  
linux-image-4.4.0-219-generic –  4.4.0-219.252~14.04.1  
linux-image-aws –  4.4.0.1099.97  
linux-image-lowlatency-lts-xenial –  4.4.0.219.190  
linux-image-virtual-lts-xenial –  4.4.0.219.190  

Reduce your security exposure

Ubuntu Pro provides ten-year security coverage to 25,000+ packages in Main and Universe repositories, and it is free for up to five machines.


Have additional questions?

Talk to a member of the team ›